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Site-dependent mean-field theory and Monte Carlo (MC) simulations are used to study and com-
pare random-field Ising ferromagnets (RFIM) and Ising diluted antiferromagnets in a field (DAFF).
For short-time-scale simulations the two approaches lead to similar results for the various history-
dependent magnetizations, and specific heats and for the metastable ground-state spin configura-
tions. The results are also in reasonable qualitative accord with experiment. Mean-field theory
which more readily provides information about free energies is used to compute the phase diagram
for two- and three-dimensional random-field systems. Since thermal fluctuations are not important
in the equilibrium critical behavior a mean-field approach is expected to contain much of the essen-
tial physics. At T=0, MC simulations corroborate the mean-field results. We distinguish three
characteristic field-dependent temperatures which in order of decreasing magnitude are the irrever-
sibility temperature T, the ordering temperature (T or Ty), and the temperature for stability of
long-range order (LRQ), T;. Ty, corresponds to the temperature at which the free-energy surface
first develops multiple minima. At an even lower temperature, T, or 7Ty, the metastable LRO
minimum first appears. However, the LRO state is not the deepest minimum until the stability tem-
perature T is reached. In the two-dimensional (2D) RFIM, the zero-temperature intercept of Ty,
called A,, scales to zero with the system size. This result, which is derived in mean-field theory and
substantiated in MC, provides strong numerical evidence for the absence of stable LRO in 2D. We
find that this 2D behavior is reflected.in 3D by the metastability of LRO for a narrow range of T
near the ordering temperature. This implies that the LRO state should exhibit time-dependent
properties, near Ty as has been reported recently. Furthermore, in equilibrium, the transition to the
LRO state may be first order. The effects of H=0 disorder in the DAFF lead to different behavior
in field hysteresis studies than in the RFIM. This result which is a consequence of the extremely
anisotropic Ising limit suggests that theoretical predictions for the time-dependent properties of the

RFIM may not be applicable to the experimentally realizable DAFF.

I. INTRODUCTION

Our understanding of random-field systems has greatly
increased during the last few years. There is a growing
consensus in the experimental and theoretical communi-
ties that the lower critical dimension d;=2. Earlier ex-
perimental uncertainties"? are attributed to the strong his-
tory dependence associated with measurements in these
systems. While an appreciation of this history depen-
dence has, in one sense, resolved the controversy concern-
ing d, it has also served to underline the complexity of
the ordering transition. Even in three dimensions it is
clear that the transition to a long-range-ordered state is of
a very unusual nature. In the random-field systems, much
like the spin glasses, there appears to be a strong interplay
between “glassiness” and phase-transition phenomena. In
this paper we focus on this interplay by studying the
random-field Ising ferromagnet (RFIM) and diluted Ising
antiferromagnet in a uniform field (DAFF) using both
Monte Carlo simulations and site-dependent mean-field
theory. The latter has been prev1ous1y applied with some
success to both spin glasses® and random-field systems®>
(including both the RFIM and DAFF cases). This paper
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follows an earlier Rapid Communications® on this topic.
The key questions we address which pertain to this inter-
play are as follows:

(i) At what temperatures and fields is the long-range-
ordered (LRO) state stable? Closely associated with this
are questions concerned with characterizing the order of
the (equilibrium) phase transition to the LRO state and
the effects of dimensionality.

(ii) How does one characterize the irreversibility phase
boundary and how does it relate to the phase boundary for
the onset of the ordered state?

(iii) To what extent are the various macroscopic vari-
ables such as the magnetization and specific heat depen-
dent on the history? To what extent are microscopic vari-
ables such as the configuration of the spins, domain walls,
etc. history dependent?

(iv) What are the important differences between
random-field ferromagnets and diluted antiferromagnets
in a field? In particular, how do these differences mani-
fest themselves in points (i)—(iii)?

These questions all revolve around our ability to distin-
guish between three characteristic temperatures. In gen-
eral, T; below which LRO is stable is distinct from the
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temperature at which the LRO state first appears (i.e., the
Curie T, or Néel temperature Ty), which is also distinct
from the temperature T, at which irreversibility first sets
in.

It is important to realize that the temperature 7; may
not be experimentally detectable, except insofar as it re-
lates to the onset of time dependence of the LRO state. It
is, however, of central importance in Monte Carlo simula-
tions of equilibrium behavior. The ordering temperature
T. or Ty is the temperature at which, for (finite) experi-
mental times, LRO disappears. Thus in experiments as in
the mean-field approach, the LRO state is in effect “su-
perheated” between T, and Ty. The irreversibility tem-

perature T, is also readily observed experimentally, al-.

though any measurement of it will vary according to the
observation time. It can, for example, be detected by
determining when the field-cooled (fc) and zero-field-
cooled (zfc) magnetizations coalesce.

We view the Monte Carlo simulations and site-
dependent mean-field theory as complementary, but not
unrelated, approaches which can both be used to address
these questions. At 7 =0, the two approaches are
equivalent, in principle, since the mean-field equations
can be satisfied by Monte Carlo—generated ground states
and vice versa. It should parenthetically be noted that for
spin glasses the mean-field approach generates® better
ground states 100 times faster than Monte Carlo (MC)
simulations for the Gaussian distribution of random ex-
change interactions. However, it is considerably less effi-
cient for the 8-function distribution.” At finite T the re-
sults in the two numerical approaches are found to be
qualitatively similar although the temperature scales are
different. What is important to stress is that the semi-
quantitative similarity between mean-field and Monte
Carlo results is clearly dependent on the Monte Carlo
time scale. The longer the MC-simulated state is allowed
to evolve the less this state resembles the mean-field re-
sults (which ignore relaxation effects). We find the two
numerical approaches are rather similar if the simulation
involves continuous cooling from above T, to T =0 over
a time scale of about 500—1000 Monte Carlo steps (MCS).
We find, using both numerical techniques, behavior in
reasonable qualitative agreement with experiment. For
T5-0 the mean-field approach has the advantage over
Monte Carlo simulations of yielding free energies so that
the relative stability of different states may be studied
directly rather than inferred indirectly through time-
dependent behavior. At the same time, mean-field theory
clearly ignores thermal-fluctuation effects so that, on gen-
eral grounds, one has to be cautious in interpreting the re-
sults. It should be stressed, however, that thermal fluc-
tuations are unimportant in determining the equilibrium
critical behavior of random-field systems. While our em-
phasis here is primarily on nonequilibrium phenomena,
the present mean-field approach presumably contains
more of the essential physics for the RFIM than, say, for
spin glasses. .

To address point (i) we calculated the phase diagrams in
the field- (H) temperature (T) plane for the onset of
stable LRO. Our phase diagram is derived by comparing
the free energies of canonical FC and ZFC states. The
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latter, in general, leads to an ordered state, whereas the
former consists of randomly ordered domains within
which there is short-range order. A stable LRO state is
said to occur when its free energy is lower than that of a
mean-field-generated FC state. Since all domain states
are not compared with the LRO state, this procedure
overestimates the region of stability of the LRO state.
While Monte Carlo results at zero T qualitatively confirm
the mean-field stability phase diagrams, they suggest that,

_as expected, the mean-field results yield an upper bound

to this region of stability. Above this stability line the
LRO state exists but is not the most stable state. Because
of the high-temperature metastability of LRO, it is argued
that upon cooling in equilibrium the phase transition to
the ordered state may be first order. By studying finite-
size scaling at T=0 it is demonstrated that in two-
dimensional systems the region of stable LRO scales to
zero as the system size increases. These calculations are
among the strongest numerical support thus far obtained
for the instability of LRO in two-dimensional random-
field systems.

To address point (ii), we use both short-time Monte
Carlo and mean-field approaches to create the two canoni-
cal FC and ZFC states. We monitor the differences be-
tween these two states by comparing macroscopic vari-
ables such as the magnetization and specific heat. The
locus of points in the H-T plane at which the two states
are macroscopically indistinguishable is said to corre-
spond to the irreversibility phase boundary. The phase
boundary for the onset of the ordered state Ty or T, is
obtained by heating the ZFC state and observing when the
order parameter vanishes. In the course of these studies,
we obtain the temperature and field dependence of the
various history-dependent magnetizations and specific
heats and thus address point (iii). These calculations all
compare favorably with their experimental counterparts.
Our calculations involve parallel studies based on both the
RFIM and DAFF. In general, we find the differences to
be quantitative rather than qualitative, with one excep-
tion. Studies of field hysteresis show that a domain state
in the RFIM relaxes to the LRO state when the random
field is turned off. By contrast, in the diluted antifer-
romagnet the presence of randomness even in zero field
prevents a domain state from relaxing to the LRO state
when the field is subsequently removed. This rigidity of
the domain walls has implications for the difference in
dynamics in the two systems.

Our calculations should be compared with previous
work on three main topics which are currently of consid-
erable interest and the subject of controversy: (A) The
lower critical dimension, (B) history-dependent properties,
and (C) first-order transitions.

A. The lower critical dimension in the RFIM

The most conclusive analytical work on the lower criti-
cal dimension is that of Imbrie, who has rigorously
shown® that d; <2. While this contradicts earlier claims®
that d;=3, it does not conclusively prove that there is no
long-range order in two dimensions (2D) at T'=0. Rather
strong evidence on the basis of an interface model for



d;=2 is presented in Ref. 10. This approach reinforces
the original Imry-Ma'! claim which was deduced using
simple domain-wall arguments.

Numerical evidence concerning the lower critical di-
mension is somewhat divided. Andelman, Orland, and
Wijewardhana!? conclude from their Monte Carlo simula-
tions that LRO is not stable in two dimensions. They
find different types of behavior in d =2, after cooling
2000 spins in a field. Either they find domain states, or
they find ordered states with equal probability that the
magnetization is parallel or antiparallel to a small
symmetry-breaking field. This behavior is to be contrast-
ed with what is observed in three dimensions (3D) where
LRO is always obtained in the direction of the
symmetry-breaking field.

Using Monte Carlo techniques Stauffer, Hartzstein,
Binder, and Aharony!® monitored the time dependence of
the magnetization produced upon field-cooling and zero-
field-cooling systems containing up to (150)* spins in 3D
and (225)* spins in 2D. In contrast to the results of Ref.
12, Stauffer et al.'* found no evidence in their Monte
Carlo studies for distinguishing between two- and three-
dimensional systems. Because the fields A applied are all
large (A> A, in our notation), it may be that these fields
were sufficiently strong so that, even in 3D, LRO is not
stable.*

Transfer-matrix calculations of Pytte and Fernandez'’
have provided rather convincing evidence for d;=2. In
2D the field dependence of the domain size or correlation
length is expected to be exponential if d;=2 and to vary
as a power law if d;=3. The observation of an exponen-
tial dependence reported in Ref. 15 supports the claim
that d1=2.

Our own zero-temperature 2D Monte Carlo and mean-
field studies address the lower critical dimension by using
energetic arguments to demonstrate that, for a fixed num-
ber of spins N =L?, there exists a critical (random) field
A, above which the LRO state has higher energy than a
domain state. We generated this fiducial domain state by
slow cooling in mean-field theory. An event slower cool-
ing by Monte Carlo techniques produces a somewhat
better domain state so that the A (L) we compute is clear-
ly an upper bound. As the size of the system L increases,
A.(L) is found to approach zero. Most importantly, we
find A, is related to L as InL o 1/A2 with the coefficient
of proportionality close to that obtained!’ from the A
dependence of the characteristic domain size or correla-
tion length £. In all cases £ is slightly less than L so that
we are in a situation where the occurrence of domains is
not limited by the size of the system.

This scaling of A, to zero as L — oo is strong numerical
support for the absence of stable LRO in two-dimensional

systems. These conclusions (at T =0) are not based solely

on the use of mean-field theory. Nevertheless, it is of
some interest that site-dependent mean-field theory does
lead to the breakdown of LRO in two dimensions. In this
respect it is clear that this mean-field theory includes fluc-
tuation effects to some degree. Furthermore, these finite-
size scaling calculations suggest that in 3D LRO is clearly
stable.

Experimentally, the evidence for the lack of stable LRO
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in two dimensions is reasonably strong, although from the
perspective of neutron-scattering measurements two- and
three-dimensional systems do not appear to be very dif-
ferent.! By contrast, birefringence measurements’ show
clearly that a magnetic field induces rounding of the tran-
sition in 2D, whereas in 3D, the transition appears to be
sharper at finite than at zero field.

B. History-dependent properties

Significant insight into the nature of metastability in
random-field systems has been provided by the work of
Villain, Bruinsma, and Aeppli and by Grinstein and Fer-
nandez.'® These authors showed that once domain states
were formed (e.g., by rapid quenches), relaxation to the
(presumably stable) LRO state proceeds by surmounting
energy barriers. This occurs slowly so that infinite-size
systems can reach thermal equilibrium only after in-
finitely long time. This class of papers'® did not address
the question of how the metastable domain states were in-
itially formed, but rather focused on the time dependence
of the decay of a given metastable state.

Yoshizawa and Belanger* used site-dependent mean-
field theory applied to diluted antiferromagnets to illus-
trate how domains are formed. They determined that
field cooling will lead to a domain state, whereas zero-
field cooling leads to a long-range-ordered state as is ob-
served experimentally. The physical picture that emerges
from this approach is similar to that of Ref. 16. At low
temperatures there are many distinct minima in random-
field systems which are presumably separated by large en-
ergy barriers. Among these are the LRO state and a large
number of different domain states. If the system is ini-
tially prepared in one of these many metastable states it
will only very slowly decay to the stable minimum. While
mean-field theory does not address the process of the de-
cay, it does establish the connection between the various
experimental procedures and the character of the low-
temperature state which is thereby accessed.

There are relatively few Monte Carlo studies which
probe the history dependence of random-field systems.
Instead, the focus in Monte Carlo studies has been on es-
tablishing the nature of the equilibrium states.!%!%17:18
The work of Stauffer et al.'? clearly indicates that FC and
ZFC processes for short-time scales lead to distinct low-
temperature states. Bekker and co-workers!” studied field
cooling in a DAFF system with (40)2 and (14)° sites.
They found using rather long running times (10 000 MCS)
that for high fields the system enters a domain state upon
field cooling, whereas for low H the LRO state is accessed
in both 2D and 3D. This latter effect is presumably a
consequence of the finite system size (which is less than
the domain size at low fields) and may not be indicative of
true LRO. As in Ref. 13, these authors claim that there is
no significant difference between 2D and 3D. It is some-
what surprising that random-field systems appear in nu-
merical simulations to “equilibrate” (i.e., establish LRO)
much more rapidly than, for example, spin glasses equili-
brate. This is presumably a consequence of finite-size ef-
fects which make it impossible to distinguish between the
LRO state and the very large number of domain states
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whose size is larger than the size of the system.

The MC simulations presented here are among the most
detailed studies in the literature of the history-dependent
properties. Using intentionally short Monte Carlo times,
we plot the two history-dependent FC and ZFC magneti-
zations and specific heats for both the RFIM and DAFF
cases, as well as the staggered magnetization for the dilut-
ed antiferromagnet. Using the results of Ref. 16 it is seen
that the domain size easily exceeds the system size for
rather short Monte Carlo running times (e.g., several
thousand MCS) and for small to moderate values of the
field. For this reason in Monte Carlo simulations many
properties appear to be reversible upon, for example, tem-
perature cycling. Field-cooled and zero-field-cooled mea-
surements frequently cannot be distinguished. This result,
because it underestimates irreversibility, is somewhat
misleading. It is clearly a consequence of finite-size ef-
fects and the indistinguishability of all metastable states
whose domain size exceeds that of the system. By con-
trast, in mean-field theory these finite-size effects are less
apparent. Because no relaxation is allowed, the mean-
field results on small systems simulate more accurately ir-
reversibility effects observed experimentally than do all
but very short Monte Carlo simulations.

It should be stressed that because it is not our intention
to focus on equilibrium effects (which are not, for the
most part, observable experimentally), we consider rather
short MC running times. However, longer-time Monte
Carlo simulations are clearly useful for other purposes;
for, example, to study the critical behavior when T, is ap-
proached from above. Qualitatively, our MC results are
quite similar to what is found in mean-field theory and re-
ported here and elsewhere.** More importantly, for these

. “short”-time MC studies these results are in reasonable
qualitative accord with experiment.

Experimentally, the difference between the FC and
ZFC states has been thoroughly studied in neutron mea-
surements,'® and despite some initial controversy, 2! is

now observed in spemfic-heat experiments.”> Earlier dila-
tion measurements?® also indicated that the specific heat
would exhibit some history dependence. Direct magneti-
zation studies are not as extensive and we are aware onIy
of the measurements of Ikeda and Kikuta®® on nearly iso-
tropic diluted antiferromagnets.?’

C. First-order transitions

Using standard mean-field theory for the RFIM,
Aharony?® pointed out that the 8-function distribution of
random fields has a tricritical point. Above the tricritical
point HT,) the transition to the LRO state is necessarily
first order, whereas below it is second order. For a Gauss-
ian distribution of random fields mean-field calculations
do not find a tricritical point. Recently, however,
Houghton, Khurana, and Seco” wused a high-
temperature-series expansion of the susceptibility to
deduce that such a tricritical point also exists for a Gauss-
ian distribution of random fields. ,

There have been several claims in the literature,1®
based on numerical calculations, that the transition to the
ordered state may be first order even at arbitrarily small

random-field strengths. Young and Nauenberg'® per-
formed Monte Carlo simulations on a RFIM lattice of
(64)° spins. Using evidence based on their measured criti-
cal exponents as well on a direct observation of abrupt
and hysteretic magnetization jumps, they claimed that the
transition to the LRO state was first order.

Even earlier, it was suggested,” on the basis of site-
dependent mean-field theory, that the RFIM and DAFF
systems may exhibit first-order transitions. This conjec-
ture arises from observed behavior of the free energies of
the domain and LRO states. In Fig. 1 is plotted the
mean-field free-energy surface F{m;} for a diluted anti-
ferromagnet as it evolves upon cooling from high tem-
perature at fixed fields. The same picture applies to the
random-field ferromagnet. The configuration space
which is represented by the abscissa corresponds to the
N-dimensional space of the {m;}. Here, m; is the
thermally averaged spin at the ith site. At high tempera-
tures there is a single paramagnetic minimum. As T is
lowered, upon field cooling this paramagnetic minimum
evolves into a FC state, consisting of randomly oriented
domains within which there is a short-range order. This
FC state has no L.RO.

At the Néel temperature Ty, the LRO-state minimum
first appears. In the RFIM and, to a lesser extent, the
DAFF, there are domain states other than the FC state at
and above Ty (which are not shown in the figure, for sim-
plicity). Near T and slightly below it is found® that the
FC domain state has lower energy than the LRO state.
Thus LRO is initially metastable, as shown by the middle
figure which depicts a rather shallow LRO minimum. At
lower temperatures, T < Ty, the LRO minimum is found
to be deeper than that of the FC state, as is indicated in
the last sketch in the figure.

Figure 1 makes it clear that within mean-field theory
the LRO state will not be accessed upon cooling at con-
stant field. The state which evolves directly out of the
paramagnetic state upon field cooling is a domain state

Evolution of Free-Energy Surface

J

paramagnet

LRO\/ T~Ty
domain

(_/"{iomain T< TN

LRO

FIG. 1. Schematic free-energy surface in the vicinity of Néel
temperature Ty. Paramagnetic minimum evolves into domain
state as T is lowered; it is separated by barrier from long-range-
ordered (LRO) state.



which is separated from the LRO state by a free-energy
barrier. It should be noted that this mean-field picture is
consistent with the experimental observation that L.LRO is
not obtained upon field cooling but only upon zero-field
cooling. As stated in Ref. 28, “field cooling must of
necessity trap the system into some non-equilibrium meta-
stable domain configuration before the expected transition
to long range order would otherwise occur upon further
cooling.” If an ordered system is warmed to temperatures
above Ty and subsequently cooled, it always falls out of
the long-range-ordered state and into a domain state.

The free-energy surface plotted in Fig. 1 is suggestive of
a first-order equilibrium phase transition as in a canonical
Landau-Ginzburg theory. The transition to the LRO
state only occurs after LRO is well established, i.e., for fi-
nite values of the order parameter. It is interesting to note
that the occurrence of a first-order phase transition and
the inaccessibility of LRO upon cooling are both conse-

quences of the same physics within a mean-field descrip-

tion.

Based on Fig. 1, we have sketched the behavior of the
magnetization in the RFIM as a function of temperature
for three different time scales. In equilibrium the magnet-
ization exhibits a first-order transition as shown in Fig.
2(a). The magnitude of the discontinuity scales with the
separation between the ordering temperature 7, and the
temperature at which the LRO state has the lower energy,
T,. For long but not infinite times the magnetization will

exhibit abrupt hysteretic jumps as shown in Fig. 2(b). The .
separation of the two discontinuities is a reflection of su- -

percooling and superheating. This behavior is similar to
what was observed by Young and Nauenberg.!® Finally
for shorter, but presumably typical experimental, time
scales the magnetization shows no discontinuities, but
rather a variety of different behaviors depending on how
the system is prepared. On these time scales the system is
“frozen” in 2 given minimum over the time scale of the
experiment. The behavior in Fig. 2(c) reflects what is ob-
served in mean-field theory where no “minima hopping”
takes place. It is clear that Figs. 2(a)—2(c) correspond to
progressively greater degrees of “broken ergodicity.”

It should be stressed, however, that the existence of a
first-order transition cannot be definitely established even
within mean-field theory simply because all free-energy
minima have not been explored. While the (paramagnetic)
FC state clearly represents a better minimum than the
LRO state above Ty, it is, however, possible that there is a
whole sequence of states with intermediate values of the
order parameter through which, in equilibrium, the sys-
tem passes as T is raised. In this second scenario, it is not
possible to rule out a continuous transition between the

LRO and paramagnetic state.

Experimentally,” neutron-scattering measurements in
Mny 75Zng,55F, give some indication of an abrupt transi-
tion upon warming from history-dependent to history-
independent behavior. Furthermore, upon field cooling

there appears to be a break in slope of the correlation

length as a function of temperature, It is by no means
clear that these experiments are evidence for a first-order
equilibrium transition, but they do suggest that the loss of
LRO occurs surprisingly abruptly even at low random

33 COMPARATIVE MONTE CARLO AND MEAN-FIELD STUDIES . . .

7663
Equilibrium
M (a)
TTs Te
"Long" Times

Ts T

"Short" Times

M (c)

Ts Te
FIG. 2. Schematic representation of temperature dependence
of magnetization M. For infinite times (2) M exhibits a first-
order jump at the stability temperature T,. For “long” times (b)
supercooling and superheating around T is observed, whereas
for “shorter”-time scales (c) M behaves very differently upon
heating ordered state and cooling from high T.

fields. It should be noted that claims based on these neu-
tron measurements appear to be inconsistent with those of
Belanger, King, and Jaccarino,’® who argue that neutron
experiments on Fep¢Zng F, are indicative of a “sharp,
second order phase transition.”

II. NUMERICAL TECHNIQUES

In order to study the properties of the random-field sys-
tem, we applied two different numerical techniques: site-
dependent mean-field theory and standard Monte Carlo
simulations. The Ising Hamiltonian describing these sys-
tems is given by

== JySiS;— F(H + H;)S; @0
i,j i

— where S;=x+7. H; is a site random field with probability
. distribution P(H;). This field is nonzero for the RFIM

and zero in the DAFF. In Eq. (2.1) H is the applied field
and Ji; the near-neighbor exchange interaction. For
random-field ferromagnets J;;=J, whereas in the DAFF
Jij=—Je;€;. Here, ¢;=1 if the jth site has a spin and is
equal to zero otherwise. In the DAFF a fraction ¢ of the
sites are occupied by a spin. Our 3D systems consisted of
up to N=(50)’ sites on a simple-cubic lattice, while in
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2D we considered systems up to N ={(200)? sites on a
square lattice. In all our studies we applied periodic
boundary conditions. For the RFIM we studied both the
Gaussian and 8-function praobability distributions corre-
sponding, respectively, to

1 1
)= —— —(h: /V2A)? 2.2
P(h;) ‘/Z_Aexp[ (h; /7V2A)°] (2.2)
and
P(h,-)——%[8(h,-—A)+5(hi+A)] . (2.3)

The parameter J sets the energy scale for magnetic fields
and temperatures. Henceforth T, H, and A are always
measured in these dimensionless units.

Our Monte Carlo studies, for the 8-function RFIM and
the DAFF, used the more efficient continuous-time algo-
rithm discussed in Ref. 31. (Note, however, that because
‘we chose the spin value to be -;—, the temperature and
magnetic fields H or A here are effectively rescaled by
multiplicative factors of 4 and %, respectively.) Because
we are interested in history-dependent effects, all the
simulations were done at a fixed cooling rate. The tem-
perature changes were in units of AT =+0.005 or 0.0025
and the simulations were run for a fixed number of steps
at each T. All results shown below are averaged over the
last half of the run at each T.

In the mean-field studies the N coupled equations

(S;)=m;=+tanh [gi [H +H;+ 3 Tym; ] ] (2.4)
J

were solved iteratively following Ref. 3. The equations
were assumed to have converged when

E[(mi )y —(my )n—I]2
i

2.5)
2[(”11 )n ]2
i

<10™¢,

where 7 indexes the iteration number. Within mean-field
theory the free energy F{m;]} is readily calculated so that
the relative stability of the various states can be directly
discussed. In the DAFF it follows that

F=(J/2)2 E;Gjmimj—H E €;:m;
i
+kBTze,[(%+m,)ln(-;-+m,)
i
+(5—m)n(3 —m;)], (2.6)

whereas for the RFIM
F= —(1/2)2 m,-mj—EH,-m,-
1] 1

+kpT J[(5+m)nl 5 +m,)
i

(3 —m)In(+~m;)] . 2.7

In both numerical procedures the field-cooled and
zero-field-cooled states were generated according to the
appropriate experimental prescription. For example, in
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mean-field theory, the FC state was obtained by first pre-
paring the system in the unique high-T paramagnetic
state at the field in question. The system is then slowly
cooled by iteratively solving the mean-field equations with
small temperature decrements. The LRO state is general-
ly obtained by cooling slowly to zero field and then apply-
ing the random or external field. However, in some in-
stances in the DAFF, the ZFC procedure did not*? gen-
erate LRO and the system was frozen in a domain state
due to the presence of disorder even in H =0. In those
cases we created the ordered state directly, verified which
of the two staggered magnetization (or magnetization)
directions was favored, and then reheated to obtain there-
by the ZFC properties. The temperature changes in
mean-field theory were generally +0.1 in units of J.

III. THE PHASE DIAGRAMS

In this section we discuss the field dependence of the
three characteristic temperatures in random-field systems:
the irreversibility temperature T, the temperature corre-
sponding to the onset of (metastable) LRO, T, or Ty, and
the temperature at which LRO is stable, T,. We use pri-
marily a mean-field approach to establish our phase dia-
grams on the basis of free-energy comparisons. Neverthe-
less, it is important to note that the zero-temperature
behavior is qualitatively confirmed by Monte Carlo simu-
lations, which, however, cannot readily provide us with
the free energies at finite 7. The phase diagrams
represent in a compact form a number of key features of
random-field systems. They are the basis for our discus-
sion of the lower critical dimension and the occurrence of
first-order phase transitions.

In Fig. 3(a) are shown the spin configurations in the
ZFC and FC ground states for three values of H (in units
of J) in a N =(60)* 2D diluted antiferromagnet with va-
cancy concentration ¢ =0.75. The top (and bottom)
panels correspond to the ZFC and FC states, respectively.
The open and solid circles represent the two directions of
the staggered magnetization. As expected, the FC state
consists of domains with no net antiferromagnetic LRO.
The larger the H the smaller the domain size. As first
noted in Ref. 4, the domain boundaries lie preferentially
along the vacancy sites, which are denoted by blanks in
the figure. For sufficiently large H, the FC and ZFC
states are indistinguishable and the system is then totally
reversible. By H =1.5 the similarity between the two
states is apparent.

In Fig. 3(b) the mean-field-generated FC ground states
are shown in the RFIM for three values of the random-
field A with a Gaussian field distribution and a 2D lattice
of (100)? spins. The ZFC states are not shown since the
system is completely ordered for the two lowest values of
A. The FC behavior is qualitatively similar to that shown
in Fig. 3(a) for the diluted antiferromagnet. There is no
substantial difference between the Gaussian and 8-
function models. The FC domain state of the latter is
shown in Fig. 3(c) for comparison. Some comparisons of
the FC domain states in Monte Carlo and mean-field
theory will be addressed in Sec. V for the DAFF. In gen-
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(c)

FIG. 3. Ground-state spin configuration in various fields for (a) field-cooled (FC) and zero-field-cooled (ZFC) states in the diluted
antiferromagnet (DAFF), (b) FC states in the RFIM with Gaussian, and with (c¢) 8-function field distributions. The two staggered
magnetization [panel (a)] directions are represented by open and solid symbols. In this and all subsequent figures, field and tempera-

ture variables are in units of J.
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eral, for short Monte Carlo time scales, the domain con-
figurations in the two numerical approaches are rather
similar. ,

To produce phase diagrams we compared the free ener-
gies of the FC and ZFC states as a function of H and T.

We also monitored the characteristic order parameter for

the ZFC state to determine where LRO disappears upon
heating. Our results for the §-function distribution in the
RFIM are shown in Fig. 4(a). For definiteness we chose
N =(30)* on a 3D simple-cubic lattice. The solid line in
the figure, which represents the highest characteristic
temperature, corresponds to that below which the FC and
ZFC states are distinct. While this temperature, called
Ty, is obtained by comparing only two states, it appears
to give a reliable estimate of the temperature at which
general irreversibility first occurs. The solid line is thus
the random-field counterpart of the so-called de

0.0 0.5 1.0 1.5

0.0 0.5 1.0 1.5
T
FIG. 4. Phase diagram in the RFIM in 3D for (a) the §-
function and (b) Gaussian random-field distributions. T, cor-
responds to the onset of irreversibility and T, to the onset of

stable LRO. T_.(A) is the (metastable) Curie temperature. The
shaded region indicates where LRO is only metastable.

Alemeida—Thouless> line in spin glasses.

It is important to note that for the RFIM, at and slight-
Iy below the irreversibility line, the state obtained upon
ZFC and subsequent warming does not have LRO. In
fact, upon warming the ZFC state, LRO disappears at a
lower temperature, T.(A), shown in 4(a) by the dotted
line. For T,=0, this line corresponds to A=1.7, which
compares favorably with the Aharony?® estimate of 1.5.
Above T.(A), the ZFC state is a domain state which is
nevertheless distinct from the FC domain state. Thus be-
tween 7.(A) and the T, the system has many metasta-
ble states which have no LRO, much as one sees in spin
glasses. Irreversibility of the ZFC state occurs at T,(A).*
The loss of LRO at T,(A) occurs rather abruptly whenev-
er T.(A) and T, are well separated. For larger A, one
sees a sharp drop in the magnetization at 7,(A). This
suggests that even in a nonequilibrium situation (i.e., on
these short-time scales) there are features in the magneti-
zation which are suggestive of a first-order transition.
However, for the DAFF we find that the counterpart of
T.(A), called the Néel line Ty(H), is indistinguishable
from the irreversibility line and that the loss of LRO at
Ty(H) does not appear to be abrupt. Our observations,
on sudden nonequilibrium transitions in the RFIM (which
have no counterpart in the DAFF), can probably not be
related to the abrupt transition reported in Ref. 29 for the
DAFF. The latter may be an effect which involves larger
time scales than considered in mean-field theory.

The lowest characteristic temperature indicated in Fig.
4(a) corresponds to the temperature 7, at which in the &-
function model the ZFC state has a lower free energy than
the FC state. As shown in Fig. 1, this occurs below the
onset temperature for LRO, T,(A). Thus over a fairly
wide range of A and T indicated by the shaded region in
the figure the LRO state is only metastable. A time
dependence associated with this state is expected at suffi-
ciently large fields. Some experimental indications for
time dependence of the ZFC state near Ty(H) were re-
ported in Ref. 24. Clearly, further experiments along
these lines are needed to verify these interesting results. It
should be stressed that this prediction for the metastabili-
ty of LRO is corroborated at T =0 by our Monte Carlo
studies. Other T =0 Monte Carlo studies*® based on ra-
pid quenches to T=0 followed by relaxation find
A, =1.35, which is, as expected, above the site-dependent
mean-field value (A.=1.25). Not surprisingly, the
mean-field theory generates a better ground state than ra-
pid quenching to T =0, but not better than that obtained
by slow Monte Carlo cooling.

In Fig. 4(b) is plotted the phase diagram for a 3D
RFIM with a Gaussian distribution of random fields.
Here, N =(30)3. The T,(A) line is not shown for the
Gaussian case because the magnetization-versus-1" curves
are rather broad, thus making it difficult to extract T,(A).
We estimate that by A=2.8, 7, is zero. This, together
with the results shown in Fig. 4(b), imply that as in the 8-
function case for sufficiently large A, there is a clear
separation between the irreversibility line T, and T,(A).
An important difference between the Gaussian and &-
function probability distributions is the behavior of the ir-
reversibility temperature, which rises nearly vertically at



low T in the Gaussian case. This indicates that even at
large A there is irreversibility at sufficiently low 7, corre-
sponding to the existence of many metastable domain
states. In contrast to the S-function distribution, in the
Gaussian case large A does not force the system into a
unique paramagnetic state. Two T =0 intercepts in our
phase diagram can be compared with previously obtained
results. Andelman et al.!> found that LRO disappeared
by A=1.37 (in our units). These-authors noted their re-
sult was in disagreement with the mean-field prediction?
of A=2.4. Presumably most of this disagreement arises
from the fact that Monte Carlo simulations are sensitive
to the stability transition temperature 7, rather than the

onset transition temperature T,. Our own estimate of the

latter is 2.8, which compares favorably with the mean-
field result of 2.4. Similarly, we find the value of A at
T =0 above which LRO is no longer stable is A, =1.45,
which is in reasonable agreement with the value of 1.37 in
Ref. 12.

In Fig. 5 is plotted a phase diagram for the diluted anti-
ferromagnet. Here, N =(40)® and the spin concentration
¢ =0.7. The effects of varying the concentration are dis-
cussed in Ref. 5, in which the phase -diagram for three
concentrations on a bee lattice are presented. These phase
diagrams are rather similar to that of the RFIM [see espe-

cially Fig. 4(a)]. Note, however, that for the DAFF there

is no resolvable difference between the temperature for the
onset of LRO, Ty (H), and the irreversibility temperature
Tir. Experimentally, the distinction between these two
temperatures is somewhat ambiguous.?»* It should be
stressed that our phase diagram must necessarily be inac-
curate at the lowest field values, since then the charac-
teristic domain size exceeds the system size. Thus we can-
not state unambiguously that the shaded region always in-
tercedes between the paramagnetic and stable LRO re-
gions. Our figures, however, suggest that in 3D for arbi-
trarily low field values LRO is not the most stable state,
sufficiently close to Ty.

I1IV. METASTABILITY OF I;RO IN 2D

In the preceding section it has been emphasized that
even at T =0 LRO is not stable for sufficiently high A.

LN IR B I R SR B SN ML B

0.0 0.5 1.0

FIG. 5. Phase diagram for the DAFF with characteristic
temperatures as defined in Fig,. 4.
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More importantly, this occurs even for A well below the
maximum value of the field which can support LRO.
These results are observed in Monte Carlo simulations as
well as mean-field theory. The goal of this section is to
study how this zero-temperature stability field A, depends
on the size of the system as well as on the sample dimen-
sionality. If indeed, d;=2, it must follow that in d =2
A, approaches zero for infinitely large systems.

In Fig. 6(a) are plotted the values of A,(T) for which in
mean-field theory the FC-generated domain states have
the same energy as the LRO state for various two-
dimensional systems. Each curve corresponds to a dif-
ferent sample length L. The T =0 intercept on each
curve is the parameter A,. The random-field distribution
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FIG. 6. (a) Temperature-dependent values of the random
field below which the LRO state is more stable than the FC
state for various-size N =L? 2D systems. Each line intercepts
T =0 at the value A,(L). (b) The full 2D phase diagram for the
same system as in (a). By extrapolation to L — oo, the entire re-
gion below T is shown shaded to correspond to unstable LRO.

This should be compared with Fig. 4(b).
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is chosen to be a Gaussian. Figure 6(a) shows clearly that
for two-dimensional systems A, approaches zero as L in-
creases t0 oo. The implications of this result for the 2D
phase diagram are shown in Fig. 6(b). To firmly establish
the lower critical dimension, our results for the L — co
behavior of A, must be compared with the characteristic
domain size £, which also depends on A..
In Ref. 15 it was shown that the domain size

E(A,)~explaJ?/4Al), {4.1)

where a~3.4. In order for energetic comparisons to be
reasonable at A=A, it must follow that the size of the
system exceeds the correlation length £. It is, however,
extremely unlikely that £(A.) can be considerably smaller
than the system size L, for this would suggest that a state
with many small domains has the same energy as a mono-
domain state. Therefore for our estimates of A, to be
reasonable we require

L(A)>EA,).

In Fig. 7 is plotted InL versus A2 for the same system
as in Fig. 6. The results fall close to a straight line, except
for the smallest system size (which might be inaccurate
due to configuration-fluctuation effects). ' We find the line
can be described by

L(A,)~exp(BJ?/4A?) , (4.3)

with 8=3.521+0.1. This result is thus consistent with Eq.
4.2).

The close agreement between L (A.) and £(A,) suggests
that A, describes the field at which the LRO and FC
domain states have the same energy as well as the field for
which a given size sample contains slightly more than one
domain. Figures 6 and 7 can then be interpreted as strong

4.2)
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FIG. 7. Size dependence of A, (defined in Fig. 6) for 2D
Gaussian RFIM.
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evidence for the absence of stable LRO in 2D systems.

At this point it is important to compare and contrast
the two phase diagrams shown in Figs. 4(b) and 6(b),
which correspond to 3D and 2D systems, respectively (for
a Gaussian distribution of exchange interactions). The
lack of stability of LRO in 2D is mirrored in 3D systems
by the existence of a region of unstable LRO over a nar-
row portion of the phase diagram. This narrow shaded
region which remains in 3D is a remnant of the more ex-
tended shaded region found in 2D systems. Thus it is
perhaps not surprising in view of the 2D results that in
3D LRO is not fully stable over the entire region of the
phase diagram (below T, or Ty).

We have studied the size dependence of A, for 3D sys-
tems, for sample lengths L =10, 20, 30, and 40. The re-
sults for different-size Gaussian random-field 3D systems
are shown in Table I. Here we find the changes in A, for
the 3D RFIM to be size independent, in contrast to the
exponential dependence found in 2D.

V. COMPARATIVE MONTE CARLO
AND MEAN-FIELD THEORY IN THE RFIM

In this section we discuss the behavior of the magneti-
zation in the RFIM as a function of both temperature and
random-field strength A. We emphasize particularly the
comparison of Monte Carlo and mean-field results, as

~ well as the effects of varying the random-field distribu-

tion.

In Fig. 8 is plotted the magnetization in the ordered
state (obtained upon warming) as a function of tempera-
ture. Figures 8(a) and 8(b) correspond, respectively, to
mean-field and Monte Carlo results (1000 MCS for
AT =0.05) for the same (30)*> sample with a 8-function
distribution. The value of My=+ and the random-field
strength A assumes the values 0.5, 1.0, and 1.5. As can be
seen, the two approaches lead to rather similar results, al-
though the temperature scales are, as expected, different.

As noted above, for the larger values of A the magneti-
zation decreases rather abruptly at the Curie temperature
T.(A). This Curie temperature is also clearly depressed
as the random field is increased, as was indicated in Fig.
4(a). Note that the curve for T,(A) in Fig. 4(a) coincides
with the three values for T,(A) which can be obtained
from Fig. 8(a).

In Fig. 9 the mean-field results for a Gaussian field dis-
tribution are illustrated. In Fig. 9(a) is plotted the mag-
netization obtained upon warming as a function of tem-
perature. Figure 9(b) compares the A dependence of the
low-temperature (T =0.1J) magnetization in the Gauss-
ian model with that of the 8-function random-field distri-

TABLE I. Size dependence of A, for Gaussian random-field
3D systems.

A N

1.5 (109
1.4 (200
14 (309
1.4 (40)°
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FIG. 8. Temperature dependence of the magnetization for various A in the N =(30)’, 8-function-distribution RFIM model. Panel
(a) is from mean-field theory (MFT) and panel (b) from Monte Carlo (MC) simulations.

bution. Because they represent low temperatures, these
last results reflect the behavior that would be observed in
Monte Carlo simulations as well. As can be seen by con-
trasting Figs. 9(a) and 8(a) the drop in the M at T, in the
Gaussian case is considerably more gradual than for the
S-function distribution. This makes it difficult to obtain
reliable estimates of 7.(A) in the former case. Similarly,
it can be seen from Fig. 9(b) that the drop in low-
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FIG. 9. (a) Temperature dependence of the RFIM magneti-
zation obtained in MFT for the Gaussian distribution. (b) Com-
parison of field dependence of the low-temperature magnetiza-
tion in Gaussian and §-function distributions. Arrows indicate
values obtained in Ref. 26. '

temperature magnetization with increasing A is sharp in
the 8-function and smooth in the Gaussian model. The
two arrows in Fig. 9(b) indicate the mean-field predictions
of T, obtained in Ref. 26. These lie a small but consistent
amount below our numerical values presumably because
of finite-size rounding of the transition observed in the
present calculations. Earlier Monte Carlo studies'? in the
Gaussian case found that the magnetization at low but fi-
nite T vanished by A=1.37. This is considerably lower
than our estimate of T,(A) which is close to that of Ref.
26. However, as noted earlier we find that, for
A>A;~1.45, LRO is not the most. stable phase, so that
in longer-time Monte Carlo simulations the LRO state
should not be observed for values of A exceeding this
lower critical value. This may thus explain the observed
discrepancy between Refs. 12 and 26.

It is of particular interest to study the behavior of a
given domain state, say the FC state upon field cycling.
Such studies highlight a significant difference between the

- ~RFIM and DAFF systems. Figure 10 shows the domain

orientations as a field-cooled state (for a 2D Gaussian dis-
tribution) is cycled in a magnetic field. The solid lines in-
dicate boundaries of the domains of a given orientation.
Initially, the system is in the FC state at A=1.0. As the
field is reduced to A=0.1, the domains clearly grow.
When the field is then increased to its initial value
A=1.0, the domains do not shrink to their smaller size.
This magnetization hysteresis is sometimes observed in
the laboratory and figures prominently in the work of
Ref. 16. However, we will see in Sec. VI that analogous
numerical studies in diluted Ising antiferromagnets do not
show appreciable hysteresis upon field cycling. This is in

- contrast to the behavior obtained in anisotropic Heisen-

berg diluted antiferromagnets which more closely resem-,
ble the (Ising) RFIM system discussed above.

VI. COMPARATIVE MONTE CARLO
AND MEAN-FIELD THEORY
IN DILUTED ANTIFERROMAGNETS

In this section we compare and contrast a variety of
properties of diluted antiferromagnets using both Monte
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FIG. 10. Ground-state domam conﬁguratlons in RFIM obtained upon (a) field cooling followed by (b) field reduction and (c) sub-

sequent increase in field.

Carlo and mean-field theory. These results represent
among the first detailed MC studies of history-dependent
properties in diluted antiferromagnets.

For a given sample, with a fixed distribution of vacan-
cies, various metastable ground-state spin configurations
can be directly compared. Figure 11 shows the spin con-
figuration in one layer of a 3D N =(50)* simple-cubic lat-
tice for a field-cooled state (with H =0.5) generated by
mean-field theory [Fig. 11(a)] and Monte Carlo simula-
tions [Fig. 11(b)]. The spin concentration ¢ =0.70. The
Monte Carlo study involved rather rapid cooling with 100
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FIG. 11. Comparison of field-cooled domain configurations
generated in (a) mean-field theory and (b) Monte Carlo cooling.
Panel (c) shows the results of a rapid quench.

MCS for each temperature, starting at 7' =0.8 and de-
creasing in units of 0.1. As the cooling rate decreases the
ground-state domain size increases appreciably. The
ground-state energy was slightly better in the Monte Carlo
simulation ( Eg = —0.4334) than in the mean-field theory
(Eg=—0.4376) even for this rapid cooling.

The two spin configurations in Figs. 11(a) and 11(b) are,
on the whole, rather similar. The domain-wall boundaries
clearly overlap, although in the mean-field state the sys-
tem has managed to incorporate several smaller domains
into larger clusters. The similarity between these two FC
states is more striking when they are compared with a
metastable state generated by a rapid quench to T =0.
The latter, which is shown in Fig. 11(c), shows no clear
correspondence with the domain configurations generated
by slower field cooling.

In Fig. 12 the temperature dependent ZFC and FC
magnetizations are plotted for several field values. Figure
12(a) corresponds to the mean-field results on a (40)° lat-
tice and Fig. 12(b) to those obtained in Monte Carlo simu-
lations with N =(30)® and spin concentration ¢ =0.7.
The MC simulation corresponds to 1000 MCS per tem-
perature for AT = £0.05. While the two approaches give
qualitatively similar results, it is clear that in the MC
studies irreversibility is less apparent for all but intermedi-
ate field values. At low H this lack of irreversibility is re-
lated to the fact that the FC domain size is larger than the
sample size. This shows up more readily in the MC simu-
lations since relaxation can occur. At high H the two
states approach the unique high field limit. This leads to
a negligible history dependence at high H.

Figure 12 may be directly compared with experiments
by Ikeda and Kikuta,>* who measured the susceptibility of
a more isotropic system, Mn,Zn,;_,F,. Direct suscepti-
bility measurements at 50, 500, and 2500 Oe show sharper
maxima in the ZFC X than was observed in our numerical
studies (where considerably larger field values were exam-
ined). The values of YZFC are always less than or equal to
XFC, as in Fig. 12. However, by 2500 Oe the splitting of
the two susceptibilities was apparent only over a narrow
range of temperatures near the maximum. It would be
useful to perform similar dc measurements on more aniso-
tropic systems so that a wider range of field values could
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be examined without the added complication of spin-flop
effects.

In Fig. 13 are plotted the two temperature-dependent
specific heats for three values of the magnetic field for the
two systems in Fig. 12. The mean-field results lead to a
slightly more asymmetric peak in Cy with more irreversi-
bility than seen in the Monte Carlo results of Fig. 13(b).
These MC simulations involved 1000 MCS per tempera-
ture with temperature intervals of 0.05. As in the MC
magnetization studies, irreversibility in Cy appears to be
absent except for intermediate field values. By contrast,
in the field-field results, there is no relaxation, so that ir-
reversibility is more apparent.

In an attempt to increase the splitting of the FC and
ZFC specific heats, and thereby obtain better agreement
with experiments, we performed a MC simulation on a
Cray-1S computer. We chose a N =(50)° with ¢ =0.7
sample using 3000 MCS per temperature with
AT=40.025 in the vicinity of T, and +0.05 below
0.7T,. The results, presented in Fig. 13(c), show some-
what more splitting due to the larger sample size. This
study emphasizes that to obtain the experimentally ob-
served splitting of the ZFC and FC heat capacity, one
must use larger systems than presently available. In the
low-H limit irreversibility is negligible in the simulation
because the domain sizes quickly exceed the system size.
In the high-H limit the peak in the specific heat is round-
ed and the splitting again diminished.

Recent specific-heat measurements by King and Be-
langer?? have reported direct observation of hysteresis in
the specific heat. The results shown in Fig. 13 are also
qualitatively in agreement with much earlier dilation mea-
surements reported by Shapiro and Olivera.?> It should be
noted that even earlier Wong and co-workers?® claimed to
see hysteresis in the specific heat which was not in accord
with initial claims based on birefringence studies.?!

In Fig. 14 are shown the staggered magnetizations as
functions of T for several values of the field in both
mean-field theory [Fig. 14(a)] and MC simulations (with
1000 MCS) [Fig. 14(b)] on the same sample. These results
which were obtained upon warming are qualitatively simi-
lar in the two approaches. As expected, mean-field theory
tends to overestimate the Néel temperature. In both nu-

(a)
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merical approaches the latter is systematically depressed
as the field is increased. It is not possible because of nu-
merical inaccuracies to deduce the field-dependent
power-law exponents to compare directly with experi-
ment.

Finally, in Fig. 15 we have repeated the field-cycling
studies on the DAFF which were discussed in the context
of Fig. 10 for the RFIM. As noted earlier, these calcula-
tions highlight an important difference between the
RFIM and DAFF systems: the DAFF appears to exhibit
little or no field hysteresis as compared with the RFIM.
In Fig. 15(a) is shown the ground-state spin configuration
for a 2D alloy with ¢ =0.75 which has been cooled in a
constant field H =1.0. The same results were obtained in
3D. In Fig. 15(b) the resulting spin configuration is
shown after the field is reduced to H =0.1. As can be
seen, the spins are virtually unaffected by this reduction in
H; nor are they changed significantly when the field is
then increased to its initial value of H =1.0. These re-
sults are a reflection of the rigidity of the domain walls
which are effectively pinned to the vacancy sites even
when the field is switched off. This is in contrast to the
RFIM, where the system has no intrinsic disorder at
H =0. It might be expected that the presence or absence
of field hysteresis in the DAFF is intimately connected

with the degree of spin anisotropy. Experimentally, it is

observed®® for weakly anisotropic systems like MnZnF,

.that the FC state acquires LRO when the field is turned

off. By contrast, in the Ising case, for example, for
FeZnF,, no LRO is obtained when H is subsequently re-
duced to zero.’” Our numerical mean-field studies on
more isotropic DAFF systems show similar results.*

YII. CONCLUSIONS

This paper represents a rather detailed comparison of
Monte Carlo and mean-field studies of random-field sys-
tems. The focus has been on history-dependent properties
in both Ising diluted antiferromagnets in a field and Ising
ferromagnets in a random field. On short-time scales the
Monte Carlo simulations are found to be qualitatively
similar to the results of mean-field theory. More impor-
tantly, for these time scales both approaches are in quali-
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FIG. 14. Comparison of the staggered magnetizations obtained in mean-field theory and Monte Carlo simulations for diluted anti-

ferromagnets in various fields H.
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H=1.0

tative agreement with experiment. Monte Carlo simula-
tions tend to underestimate the degree of irreversibility.
This is due to the fact that in finite-size systems domain
states of larger than sample size obtained upon, for exam-
ple, field cooling and subsequent relaxation, are indistin-
guishable from the ZFC state which has true long-range
order.

We emphasize that there are three characteristic tem-
peratures which are distinguishable at all but very low
fields. These are in order of decreasing magnitude: the
irreversibility temperature T}, the ordering temperature
T, (or Ty), and the temperature for stability of LRO, Tj.
These field-dependent temperatures lead to a complex
phase diagram. The fact that T lies significantly below

T. (or Ty) implies that LRO is metastable for a narrow _

range of temperatures near the onset temperature. Pre-
liminary experimental indications which support this pic-
ture are presented in Ref. 24. As a consequence of the

separation of the two temperatures, it follows from a

mean-field description that in equilibrium the transition
to the ordered state may be first order. In 2D systems the
distinction between T, (or Ty) and T is also essential.
We find that T, is relatively insensitive to the system size,
whereas T, scales to zero with increasing size. This is in
accord with the generally accepted picture that in 2D
LRO is a metastable as distinct from a globally stable
minimum.

We find little qualitative difference between the RFIM
and DAFF cases. The only significant effect of the in-
trinsic disorder in the DAFF comes in field-hysteresis
studies. In an Ising DAFF a domain state will not estab-
lish LRO when the field is subsequently removed. This is
in contrast to behavior in the RFIM and presumably
arises because of impurity pinning. Furthermore, in more
isotropic DAFF systems® the effects of impurity pinning

are considerably reduced. These results, which are corro-

borated experimentally, suggest that a general apprecia-
tion of impurity-pinning effects may be important in
understanding the dynamics of experimentally realizable
random-field systems. Predictions based solely on the
RFIM model may not be wholly applicable to experiment.

The interplay of intrinsic disorder and Ising spins is re-
lated to our observation that the state obtained upon field
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FIG. 15. Ground-state domain configurations in DAFF obtained upon (a) field cooling followed by (b} field reduction and (c) sub-
sequent increase in field. This figure should be compared with Fig. 10 for the RFIM.

lowering (at fixed 7) will not be the same as the field-
cooled state. This appears to be in contrast to experi-
ment,> although it may be an artifact of the extreme an-
isotropy of the Ising case. A more serious contradiction
with experiment is the observation that the FC state is not
reversible upon subsequent warming,* as our results
would imply. (It should be noted, parenthetically, that
from an experimental point of view this lack of reversibil-
ity essentially eliminates the FC state from consideration
as the “true equilibrium” state.) Within the mean-field
approach this irreversibility of the FC state can only be
understood if there is some degree of relaxation out of the
FC state, which is evidently not directly observed.’® Ex-
aminations of thermodynamic identities like Maxwell’s re-
lations provide further tests of the present picture. Our
mean-field studies indicate that Maxwell’s relations will

hold for both the ZFC and FC states, but that in the ZFC
" state this relation should break down at the ordering tem-

perature above which in the RFIM the ZFC state
represents a domain state which is nevertheless distinct
from the FC state. "

In summary, our mean-field and Monte Carlo studies
combine to give a fairly consistent picture of the static
properties of random-field systems. While agreement
with existing experiments is generally satisfactory, further
and more direct measurements of the various magnetiza-
tions and specific heats are clearly needed in systems with
varying degrees of anisotropy. We view studies of the
time-dependent FC and ZFC magnetizations over a range
of temperatures and fields as essential in helping to unrav-
el the underlying physics in the random-field systems.

After this manuscript was “completed, we received
copies of analytical® and numerical** studies of the
equilibrium RFIM and DAFF which conclude that in the
vicinity of the ordering temperature there exist
exponentially-long-time scales. In addition in Ref. 41,
evidence is presented for a continuous equilibrium transi-
tion to the ordered state. As discussed in Sec. IC, we can-
not rule out the possibility of a second-order transition.
The present work does not directly address equilibrium or
dynamical properties. However, it follows from our free-
energy surface picture (see Fig. 1) that in the vicinity of
Ty the system will equilibrate extremely slowly as it finds
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its way over energy barriers to the new equilibrium state.
In the present language the existence of exponentially long
relaxation times is a consequence of two (or more) meta-
stable states, separated by an energy barrier, each of which
corresponds to the equilibrium state over different re-
gimes of temperature. This is, clearly, what we have ob-
served in both the DAFF and RFIM.
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